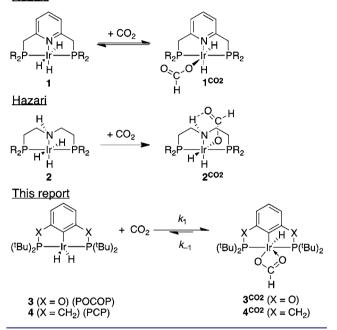


Selective Electrocatalytic Reduction of CO₂ to Formate by Water-Stable Iridium Dihydride Pincer Complexes

Peng Kang, Chen Cheng, Zuofeng Chen, Cynthia K. Schauer, Thomas J. Meyer,* and Maurice Brookhart*

Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States

Supporting Information


ABSTRACT: Iridium dihydride complexes supported by PCP-type pincer ligands rapidly insert CO₂ to yield κ^2 -formate monohydride products in THF. In acetonitrile/ water mixtures, these complexes become efficient and selective catalysts for electrocatalytic reduction of CO₂ to formate. Electrochemical and NMR spectroscopic studies have provided mechanistic details and structures of key intermediates.

n solar fuels formation—water splitting to give hydrogen or **L**CO₂ reduction to CO, other oxygenates, or hydrocarbons a key is electro- or photoelectrocatalyzed reduction of CO₂. Progress has been made in identifying electrocatalysts,¹ with the dominant product being CO in most systems.² A few molecular electrocatalysts yield formate/formic acid;³ however, these catalysts are often accompanied by nonselective formation of CO and H₂ or operate with low efficiency. For example, the $[(\eta^5-Me_5C_5)Rh(bpy)Cl]^+$ (bpy = 2,2'-bipyridine) catalyst^{3e} yields a 2:1 formate/H₂ mixture upon electrochemical reduction of CO₂ in 5% water/acetonitrile. In contrast, formate dehydrogenase⁴ selectively reduces CO₂ to formate at the thermodynamic potential with a high turnover frequency of ca. 280 s⁻¹. Since formic acid could serve as a hydrogen storage material,⁵ a precursor to methanol, or a fuel in its own right,⁶ more efficient electocatalysts for selective conversion of CO₂ to formic acid are desirable.

The insertion of CO₂ into metal-hydrogen bonds^{7,8} has recently received attention, particularly in connection with hydrogenation of CO_2 .^{7a-f} Nozaki and co-workers^{7c} have shown that the six-coordinate, 18-electron Ir(III) pincer trihydride complex 1 (Scheme 1) reacts with CO_2 in tetrahydrofuran (THF) at 25 °C to yield the formate complex 1^{CO2} . Under 1 atm CO₂, 1 and 1^{CO2} are in equilibrium and present in approximately equal concentrations. Hazari and coworkers^{7d} reported that six-coordinate Ir(III) pincer trihydride 2 inserts CO_2 to yield 2^{CO2} , in which formation of the adduct is driven by formation of a hydrogen bond as shown. A density functional theory (DFT) study by these authors suggested that insertion of CO₂ into six-coordinate Ir(III) trihydrides is normally endothermic. Both the Nozaki and Hazari systems hydrogenate CO₂ to formate under basic conditions. We report here that five-coordinate, 16-electron Ir(III) pincer dihydrides readily insert CO2 and can be used as electrocatalyts for the selective reduction of CO₂ to formate or formic acid.⁸

Treatment of either (POCOP)IrH₂ (3) or (PCP)IrH₂ (4) with CO_2 (1 atm) in THF at 25 °C rapidly yields the

Scheme 1. CO₂ Insertion by Ir Pincer Hydrido Complexes Nozaki

corresponding $\kappa^2\text{-}\text{formate}$ complexes 3^{CO2} and 4^{CO2}, as shown in Scheme 1. 3^{CO2} exhibits a formyl proton resonance at 9.3 ppm correlated to a carbon resonance at 173 ppm in ¹H-¹³C HMQC spectra (additional NMR data are summarized in the SI⁹). Purging these solutions with Ar at 25 $^{\circ}$ C results in CO₂ loss and regeneration of 3 and 4. The second-order rate constants for formation of these adducts, k_1 , were determined at -65 °C, and the data are summarized in Table 1. The firstorder rate constants for loss of CO₂ from the formate chelates, k_{-1} , were determined by preparing the adducts using ¹³CO₂ in THF, cooling to -65 °C, purging with Ar to remove excess 13 CO₂ from solution, and then adding a large excess of CO₂. The rates of labeled ${}^{13}\text{CO}_2$ loss from the adducts (k_{-1}) followed first-order kinetics, as expected. Determination of the rate constants k_{-1} over a series of temperatures between 0 and -20°C and subsequent Eyring analysis provided the ΔH^{\ddagger} and ΔS^{\ddagger} values summarized in Table 1. Extrapolation of the first-order rate constants k_{-1} to the temperature where the second-order rate constants k_1 were determined provided equilibrium constants, K_{eq} , corresponding to ΔG values of -5.9 kcal

Received: January 17, 2012 Published: March 5, 2012

Table 1. Kinetic and Thermodynamic Data for the Reactions of CO₂ with 3 and 4 in THF- d_8 at Low Temperatures^{*a*}

	3	4
$k_{1,208\mathrm{K}} \ (\mathrm{M}^{-1} \ \mathrm{s}^{-1})^b$	$4.4(2) \times 10^{-4}$	$1.00(8) \times 10^{-2}$
$\Delta G_{1,208\mathrm{K}}^{\ddagger}$ (kcal mol ⁻¹)	15.3(2)	14.0(2)
$k_{-1,273\rm K}~(\rm s^{-1})$	$5.7(6) \times 10^{-4}$	$1.2(1) \times 10^{-3}$
ΔH_{-1}^{\ddagger} (kcal mol ⁻¹)	25(2)	28(2)
ΔS^{\ddagger}_{-1} (cal mol ⁻¹ K ⁻¹)	19(4)	30(10)
$K_{\rm eq,208K}~({\rm M}^{-1})$	$1.6(9) \times 10^{6}$	$1.3(9) \times 10^{8}$
$\Delta G_{208\mathrm{K}}$ (kcal mol ⁻¹)	-5.9(4)	-7.7(6)

^aErrors shown represent two standard deviations. ^bThe CO_2 concentration in 1 atm CO_2 saturated THF at 208 K is 5.6 M by quantitative ¹³C NMR analysis.

mol⁻¹ for 3 and -7.7 kcal mol⁻¹ for 4 at -65 °C. These energetically favored insertions are apparently driven by stabilization through κ^2 -chelation, an option unavailable to six-coordinate hydrides.¹⁰

Electrocatalytic reduction of CO_2 to formate was achieved by using 3 as the catalyst. In the cyclic voltammogram (CV) in MeCN with 5% H₂O (v/v, 0.1 M ^{*n*}Bu₄NPF₆) saturated by 1 atm CO₂ (Figure 1 left),¹¹ an electrocatalytic onset for CO₂

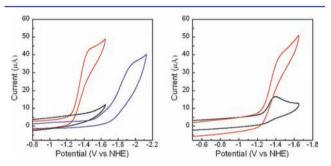
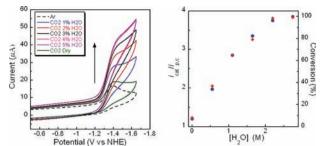


Figure 1. Left: CVs of 1 mM 3 in MeCN under Ar (black) or 1 atm CO_2 (red) and in THF under 1 atm CO_2 (blue). Right: CVs of 1 mM $3a^+$ under Ar (black) and CO_2 (red) in MeCN. Conditions: glassy carbon electrode, 7.1 mm², 5% H₂O, 0.1 M "Bu₄NPF₆, 100 mV s⁻¹, room temperature.

reduction appears at ca. -1.2 V vs NHE. The onset is shifted to ca. -1.6 V in 5% H₂O/THF. In view of the more positive potential in MeCN/H₂O, it was the solvent system of choice for further electrochemical studies. Controlled-potential electrolysis at -1.45 V in 5% H₂O/MeCN for 25 h (glassy carbon, 7.1 mm^2) yielded formic acid as the predominant product upon acidic workup, with a turnover number of ca. 40 by NMR analysis and a Faradaic efficiency of 85%.9 H2 was found as a side product (15%) by headspace GC analysis; it was formed via a nonspecific background reduction of water by the electrode.¹² Notably, no detectable amount of CO was found (<1%). The catalytic current gradually decreased over the extended period of the electrolysis as the solution eventually became basic (apparent pH > 9). Similar to 3, 4 exhibits a catalytic current in 5% H₂O/THF under CO₂, yet the onset potential occurs more negatively, at ca. -1.8 V vs NHE.

The redox-active species in the catalytic cycle was investigated by cyclic voltammetry. As shown in Figure 1 left, in 5% H₂O/MeCN (0.1 M ⁿBu₄NPF₆) under Ar in the absence of CO₂, **3** exhibits no significant reduction wave to the solvent limit at -1.7 V. Rather, two oxidation waves were found at anodic peak potentials ($E_{p,a}$) of 0.25 and 0.72 V vs NHE (Figure S1⁹). The lack of a reduction wave for **3** points to it as

the "reduced" form. A cationic complex with a single hydrido ligand, $[(POCOP)IrH(MeCN)_2](BAr^F_4)$ (3a·BAr^F₄), was synthesized⁹ as an "oxidized" counterpart of 3. Indeed, 3a⁺ exhibited an irreversible reduction wave at a cathodic peak potential ($E_{p,c}$) of -1.4 V in MeCN under Ar (Figure 1 right), coincident with the onset potential for electrocatalytic CO₂ reduction by 3.


The peak current $(i_{p,c})$ for the reduction of $3a^+$ varies linearly with the square root of the scan rate $(v^{1/2})$ from 10 to 500 mV s^{-1} under År (Figure S2⁹), consistent with diffusional reduction. Following a reductive scan, oxidation waves reappear at $E_{p,a}$ = 0.25 and 0.72 V, characteristic of 3, thus confirming electrochemical generation of 3 from 3a⁺. The integrated area of each oxidation wave is ca. 50% of that for the reduction wave at -1.4 V. On the basis of an internal comparison of the integrated currents, the oxidation waves at 0.25 and 0.72 V probably correspond to one electron each, accounting for net oxidation of one of the hydrido ligands; reduction of $3a^+$ at -1.4 V is overall a two-electron process. The latter is consistent with $Ir(III) \rightarrow Ir(I)$ reduction, which is supported by the result of a DFT calculation showing that the LUMO of $3a^+$ is predominantly iridium-centered (Figure S9⁹). There is precedent for two-electron Ir(III)/Ir(I) electrochemical reduction.36

The electrochemical observations are consistent with a mechanism in which the catalyst resides largely as $3a^+$ in the electrocatalytic steady state, with 3 as the reactive form. Reduction of $3a^+$ remains irreversible even at higher scan rates (up to 1 V s^{-1}) in formally dry MeCN, suggesting rapid protonation of the Ir(I) intermediate to regenerate the iridium dihydride species, which is reactive toward CO₂.

The kinetics of the reaction between 3 and CO2 was investigated by cyclic voltammetry in MeCN with 5% H₂O. Relative to $i_{p,c}$ for $3a^+$ under Ar, the peak current for 3 (or $3a^+$) under $CO_2(i_{cat})$ is enhanced ca. 3.8-fold at a scan rate of 100 mV s⁻¹. The catalytic peak current (i_{cat}) varies linearly with the Ir concentration (Figure S3⁹), consistent with a mechanism for CO₂ reduction that is first-order in catalyst. When normalized for the scan rate $(i_{cat}/v^{1/2})$, the catalytic peak current increases with decreasing scan rate from 500 to 5 mV s⁻¹ (Figure S4⁹), consistent with a catalytic process in which 3a⁺ is regenerated and reduced at the electrode. Rate constants were evaluated by measurements of peak current ratios with (i_{cat}) and without $(i_{p,c})$ CO₂ at saturation. In eq 1,¹³ n is the electrochemical stoichiometry (assumed to be 2 for both the diffusional and catalytic currents), v is the scan rate in V s⁻¹, F is the Faraday constant, and k_{cat} is the observable catalytic rate constant, or turnover frequency. From the plot of $i_{cat}/i_{p,c}$ versus $v^{-1/2}$ (Figure S4 right⁹), $k_{cat} = 20(2) \text{ s}^{-1}$ in MeCN with 5% H₂O at 25 °C and 1 atm CO₂. The dependence of k_{cat} on [CO₂] was not investigated.

$$\frac{i_{\text{cat}}}{i_{\text{p,c}}} = \frac{(RT)^{1/2}}{0.446(nFv)^{1/2}} (k_{\text{cat}})^{1/2}$$
(1)

As shown by the data in Figure 2 left, in addition to acting as a proton source, water plays a key role in the CO_2 reduction. From the plot of $i_{cat}/i_{p,c}$ versus $[H_2O]$ (Figure 2 right), the catalytic rate increases with added water, reaching saturation at ca. 4%. In the absence of CO_2 , there is no significant current enhancement with added H_2O up to 5% under Ar (Figure S5⁹). An NMR study showed that 3 is stable with added H_2O for

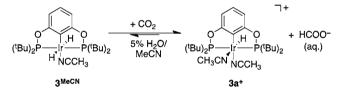
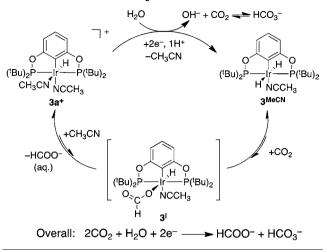


Figure 2. Left: CVs of 1 mM $3a^+$ in MeCN with 0-5% added H₂O under CO₂ (glassy carbon electrode, 0.1 M "Bu₄NPF₆, 100 mV s⁻¹). Right: Plots of $i_{cat}/i_{p,c}$ (blue) and conversion of 3 to $3a^+$ + formate by NMR (red) vs [H₂O] in MeCN.

days. There is no evidence that **3** is catalytically active for water reduction to hydrogen.

An NMR investigation clarified the role of water in the overall CO₂ reduction mechanism. In anhydrous MeCN, **3** exists as a *six-coordinate* acetonitrile complex, (POCOP)Ir- $(H)_2(MeCN)$ (3^{MeCN}), which forms no detectable insertion product under CO₂. When water is added, 3^{MeCN} reacts with CO₂ to yield the cationic hydride [(POCOP)IrH(MeCN)₂]⁺ ($3a^+$), releasing formate anion, HCOO⁻ (Scheme 2). There is a

Scheme 2. Reaction of $(POCOP)IrH_2(MeCN)$ (3^{MeCN}) with CO₂ in MeCN with Added H₂O



measurable equilibrium between 3^{MeCN} and $3a^+ + HCOO^-$, with the ionic reaction products present at >95% conversion with 4% added water (Figure 2 right and Figure S6⁹). The equilibrium in Scheme 2 is likely driven largely by stabilization of the formate anion by solvation and hydrogen bonding to water. Saturation at 4% water in the catalytic electrochemical reduction matches the "saturation" in the equilibrium formation of $3a^+$, confirming $3a^+$ to be the species that is reduced.

Scheme 3 shows an electrocatalytic mechanism consistent with the experimental observations. In acetonitrile, the dihydride exists as the acetonitrile adduct 3^{MeCN} . As shown above, 3^{MeCN} is in rapid equilibrium with $3a^+$, which likely forms via a κ^1 -formate complex, $3^{I.14}$ At water concentrations above 4%, the dominant form of the catalyst in the electrocatalytic steady state is $3a^+$. Two-electron, one-proton reduction of $3a^+$ yields dihydride 3^{MeCN} . Water is the proton source, so hydroxide is generated and reacts with a second CO₂ to form bicarbonate, $HCO_3^{-.15}$ Both 3^{MeCN} and $3a^+$ as the BArF₄⁻ salts have been independently prepared and characterized.⁹

The results reported here provide quantitative data for insertion of CO_2 into five-coordinate iridium hydrides and a detailed mechanistic analysis of electrocatalytic CO_2 reduction by an Ir(III/I) hydride couple. There are two particularly notable features of these reductions in acetonitrile/water: (1) The catalysts are selective for reduction of CO_2 to formate. No CO is formed, and the small amount of hydrogen that is formed results from background reduction of water. The

Scheme 3. Proposed Mechanism for Electrocatalytic CO_2 Reduction with 3 in 5% H₂O/MeCN

dihydrides are unreactive toward water under the conditions employed here for electrochemical experiments. (2) The role of the solvent is remarkable. Addition of water to 3^{MeCN} in CH₃CN/CO₂ results in the formation of cationic $3a^+$ and formate. Cationic $3a^+$ is much more easily reduced than the neutral Ir(III) species. Thus, added water plays a critical role in lowering the reduction potential for electrocatalysis and minimizing background reduction of protons to H₂. These observations are potentially significant in the design of useful catalysts and procedures for generation of formate/formic acid in solar fuel schemes. We are expanding our investigations of this class of electrocatalysts for CO₂ reduction to further enhance the rates, lower the reduction potentials, and transfer the observed reactivity to electrode surfaces.

ASSOCIATED CONTENT

Supporting Information

Experimental and computational details, additional voltammograms and NMR data, bulk electrolysis, and product analysis. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

tjmeyer@unc.edu; mbrookhart@unc.edu

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Dr. Sabuj Kundu for the synthesis of 4 and gratefully acknowledge financial support of the UNC EFRC: Solar Fuels by DOE, Office of Science, Office of Basic Energy Sciences Award DE-SC0001011 (P.K., Z.-F.C.) and NSF as part of the Center for Enabling New Technologies through Catalysis (CENTC) CHE-0650456 (C.C.).

REFERENCES

(1) (a) Meyer, T. J. Acc. Chem. Res. **1989**, 22, 163–170. (b) Leitner, W. Angew. Chem., Int. Ed. Engl. **1995**, 34, 2207–2221. (c) Benson, E. E.; Kubiak, C. P.; Sathrum, A. J.; Smieja, J. M. Chem. Soc. Rev. **2009**, 38, 89–99. (d) Mikkelsen, M.; Jorgensen, M.; Krebs, F. C. Energy Environ. Sci. **2010**, 3, 43–81.

Journal of the American Chemical Society

(2) (a) Beley, M.; Collin, J. P.; Ruppert, R.; Sauvage, J. P. J. Chem. Soc., Chem. Commun 1984, 1315–1316. (b) Dubois, D. L.; Miedaner, A.; Haltiwanger, R. C. J. Am. Chem. Soc. 1991, 113, 8753–8764.
(c) Hammouche, M.; Lexa, D.; Momenteau, M.; Saveant, J. M. J. Am. Chem. Soc. 1991, 113, 8455–8466. (d) Bruce, M. R. M.; Megehee, E.; Sullivan, B. P.; Thorp, H. H.; Otoole, T. R.; Downard, A.; Pugh, J. R.; Meyer, T. J. Inorg. Chem. 1992, 31, 4864–4873. (e) Smieja, J. M.; Kubiak, C. P. Inorg. Chem. 2010, 49, 9283–9289. (f) Bourrez, M.; Molton, F.; Chardon-Noblat, S.; Deronzier, A. Angew. Chem., Int. Ed. 2011, 50, 9903–9906. (g) Chen, Z. F.; Chen, C. C.; Weinberg, D. R.; Kang, P.; Concepcion, J. J.; Harrison, D. P.; Brookhart, M. S.; Meyer, T. J. Chem. Commun. 2011, 47, 12607–12609.

(3) (a) Slater, S.; Wagenknecht, J. H. J. Am. Chem. Soc. 1984, 106, 5367–5368.
(b) Ishida, H.; Tanaka, H.; Tanaka, K.; Tanaka, T. J. Chem. Soc., Chem. Commun 1987, 131–132.
(c) Bolinger, C. M.; Story, N.; Sullivan, B. P.; Meyer, T. J. Inorg. Chem. 1988, 27, 4582–4587.
(d) Arana, C.; Yan, S.; Keshavarzk, M.; Potts, K. T.; Abruna, H. D. Inorg. Chem. 1992, 31, 3680–3682.
(e) Caix, C.; Chardon-Noblat, S.; Deronzier, A. J. Electroanal. Chem. 1997, 434, 163–170.
(f) Rail, M. D.; Berben, L. A. J. Am. Chem. Soc. 2011, 133, 18577–18579.

(4) Reda, T.; Plugge, C. M.; Abram, N. J.; Hirst, J. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 10654–10658.

(5) Johnson, T. C.; Morris, D. J.; Wills, M. Chem. Soc. Rev. 2010, 39, 81–88.

(6) Rice, C.; Ha, R. I.; Masel, R. I.; Waszczuk, P.; Wieckowski, A.; Barnard, T. *J. Power Sources* **2002**, *111*, 83–89.

(7) (a) Jessop, P. G.; Ikariya, T.; Noyori, R. Nature 1994, 368, 231–233. (b) Jessop, P. G.; Joo, F.; Tai, C. C. Coord. Chem. Rev. 2004, 248, 2425–2442. (c) Tanaka, R.; Yamashita, M.; Nozaki, K. J. Am. Chem. Soc. 2009, 131, 14168–14169. (d) Schmeier, T. J.; Dobereiner, G. E.; Crabtree, R. H.; Hazari, N. J. Am. Chem. Soc. 2011, 133, 9274–9277. (e) Tanaka, R.; Yamashita, M.; Chung, L. W.; Morokuma, K.; Nozaki, K. Organometallics 2011, 30, 6742–6750. (f) Langer, R; Diskin-Posner, Y.; Leitus, G.; Shimon, L. J. W.; Ben-David, Y.; Milstein, D. Angew. Chem., Int. Ed. 2011, 50, 9948–9952. (g) Creutz, C.; Chou, M. H. J. Am. Chem. Soc. 2007, 129, 10108–10109. (h) Chakraborty, S.; Zhang, J.; Krause, J. A.; Guan, H. J. Am. Chem. Soc. 2010, 132, 8872–8873. (i) Federsel, C.; Boddien, A.; Jackstell, R.; Jennerjahn, R.; Dyson, P. J.; Scopelliti, R.; Laurenczy, G.; Beller, M. Angew. Chem., Int. Ed. 2010, 49, 9777–9780. (j) Rankin, M. A.; Cummins, C. C. J. Am. Chem. Soc. 2010, 132, 10021–10023.

(8) (PCP)Rh(η^2 -H₂) complexes have been shown to react with CO₂ (see a-c) and form stable κ^2 -chelate complexes (see b and c): (a) Kaska, W. C.; Nemeh, S.; Shirazi, A.; Potuznik, S. Organometallics **1988**, 7, 13–15. (b) Vigalok, A.; Ben-David, Y.; Milstein, D. Organometallics **1996**, 15, 1839–1844. (c) Huang, K. W.; Han, J. H.; Musgrave, C. B.; Fujita, E. Organometallics **2007**, 26, 508–513. (9) See the Supporting Information (SI).

(10) (a) An Ir PCP-pincer κ^2 -bicarbonate chelate has been crystallographically characterized and provides evidence in addition to the NMR data for the formation of κ^2 -chelates. See: Lee, D. W.; Jensen, C. M.; Morales-Morales, D. Organometallics **2003**, 22, 4744–4749. (b) The core atoms binding to Ir in a single crystal of **3**^{CO2} have been refined and support a κ^2 coordination mode, but disorder of the *tert*-butyl methyl groups prevented full refinement.

(11) The saturated CO₂ concentration in MeCN was determined to be 0.38 M by a quantitative single-pulse 13 C NMR experiment under 1 atm CO₂ at 25 °C. A CO₂ solubility of 0.28 M in MeCN obtained using a back-titration method was previously reported. See: Fujita, E.; Szalda, D. J.; Creutz, C.; Sutin, N. *J. Am. Chem. Soc.* **1988**, *110*, 4870–4871.

(12) Control experiments without 3 under identical conditions for 25 h produced more H_2 than with 3 added (see the SI for details).

(13) Zanello, P. Inorganic Electrochemistry: Theory, Practice and Applications; Royal Society of Chemistry: Cambridge, U.K., 2003.

(14) Exposing dihydride 4 in anhydrous MeCN to CO_2 yields the sixcoordinate κ^1 -complex (PCP)IrH(MeCN)₂(OOCH) (4¹). Addition of water to this solution results in formate ionization to yield [(PCP) IrH(MeCN)₂]⁺ (4a⁺) plus HCOO⁻ (see the SI for characterizations). The observation of 4^I suggests 3^I as a possible intermediate in the conversion of 3^{MeCN} to $3a^{\scriptscriptstyle +}.$

(15) A bicarbonate resonance was observed at 162 ppm by 13 C NMR spectroscopy in the electrolysis solution without acidic workup. Upon the acidic workup, CO₂ was released, and the bicarbonate signal could no longer be observed.